Generative Adversarial Networks

/assets/img/posts/inu_paper/structure.png

이미지 출처:developers

Train

Objective function

\begin{align} minmax{(_{\theta{_g}}, _{\theta{_d}})} = [E{_{x} \sim P{_{data}}} \log D{_{\theta}{_d}} (x) + E{_{z} \sim p{_{z}}} \log (1 - D{_{\theta}{_d}} (G{_{\theta}{_g}} (z))) ] \end{align}

  1. Gradient ascent on discriminator

    \begin{align} max{(_{\theta{_d}})} = [E{_{x} \sim P{_{data}}} \log D{_{\theta}{_d}} (x) + E{_{z} \sim p{_{z}}} \log (1 - D{_{\theta}{_d}} (G{_{\theta}{_g}} (z))) ] \end{align}

  2. Gradient descent on generator

GAN 구현(Tensorflow)

Generator

Discriminator

Loss

Optimizer

Train

/assets/img/posts/inu_paper/gnerate36.png

References

쉽게 씌어진 GAN
Jaejun Yoo’s Playgraound